3) Consider a system with 3 resources (A, B, C) in quantity (7, 7, 6). The Banker's Algorithm is used to allocate resources and it has the following SAFE state:

Available: A B C 1 2 2

Process	Allocation	Max	Need
	A B C	A B C	A B C
P0	2 1 1	2 4 4	0 3 3
P1	1 1 2	2 4 4	1 3 2
P2	3 2 1	6 6 1	3 4 0
P3	0 1 0	0 3 2	0 2 2

- a) Justify why the current state is safe.
- b) For each part, write your choices on your solution sheet. You do not need to justify your answers.
- i) Select a process and a request of a single instance of an available resource where the request will be denied. The resource must be within the specified need for that process.

Process	Resource		
ii) Select a process and a request will be allowed.	request of a single	instance of an avai	lable resource where the

Process	Resource
---------	----------

CS 6901 Capstone Exam Data Structures and Algorithms Spring 2014 Choose any 2 problems.

1) Write the function

insert_double (*NodeType head, int key)

to insert a new integer key into a sorted non-empty doubly linked list beginning at address head. Declare all data structures.

2) Write the function

int count2children(treeptr p);

that is given a (possibly empty) binary tree and returns the number of nodes in the tree that have both a left child and a right child.

3) Solve the recurrence relation T(n) = 2T(n/2) + 5 where T(1) = 1 and $n = 2^k$ for a nonnegative integer k. Your answer should be a precise function of n in closed form. (An asymptotic answer is not acceptable.) Justify your solution.

Theory Exam Spring 2014