Directions:

- You will answer FOUR questions.
- You MUST choose at least ONE question from each class (one from Math 620, one from Math 630, and one from Math 670).
- The fourth question can come from any of the classes.

Time: 2.5 hours

Math 620

- 1. Let G be a group. Prove that G is abelian if and only if the map $: G \to G$ defined via $(g) = g^{-1}$ is a group automorphism.
- 2. Let R be an integral domain. Prove that for a in R, $\langle a \rangle = R$ if and only if a is a unit.

Math 630

- 3. Consider the sequence of functions $f_n(x) = x^{2n}$.
 - (a)

Math 670

5. Consider the equation $e^x = 3 - (x - 1)^2$

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 640: Complex Analysis

- 1. Let D be an open connected subset of $\mathbb C$ and let f:D $\mathbb C$ be analytic in D Prove that if $\overline f$ is analytic in D then f is constant in D.
- 2. Prove: If f is analytic within and on a simple closed contour z_0 , and z_0 is not on z_0 , then

$$\int_{z\in} \frac{f'(z)}{(z-z_0)^2} dz = \int_{z\in} \frac{f'(z)}{z-z_0} dz$$

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 660: Topology

3. Let X be a Hausdor space and f: X X be a continuous function. Prove: $F = \{x \mid X : f(x) = x\}$ is closed in X.

4. Let A and B be disjoint compact subspacesmpacts95.411ausdor \mathcal{A} ace Prove: There exist disjoint open subsets U and V of X such that A U and B V.

(Recall: For any compact subspace Y h883252s95.453(H_0 a)fl(V_0 s)-1(do)1(r)-353(space)]TF1911.955Tf Y, there exist disjoint open neighborhoods of X_0 and Y.)

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 675: Di erential Equations

5. Consider the following di erential equation

$$(x^2 - 1)y'' + xy' - y = 0$$

- (a) Find the recursion relation for the series solution centered at $x_0 = 0$.
- (b) Find the first six non-zero terms of the series solution centered at $x_0 = 0$. Write your final answer in terms of the coe cients a_0 and a_1 .
- 6. Consider the system of di erential equations given by

$$\mathbf{x}' = \left(\begin{array}{cc} 0 & 2 \\ -1 & 3 \end{array}\right) \mathbf{x}$$

- (a) What is the general solution to the homogeneous di erential equation above?
- (b) What is the general solution to the inhomogeneous system:

$$\mathbf{x}' = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} \mathbf{x} + \begin{pmatrix} e^t \\ -e^t \end{pmatrix}.$$

Simplify your answer.

Directions: You will answer THREE questions from a total of four questions, posed from two classes.

Time: 2 hours

Math 680: Optimization

7. Solve the following problem using the Simplex method. Clearly show the set up of the problem, the Simplex tableau, and the solution.

maximize
$$6x_1 + 9x_2 + 10x_3$$

subject to $3x_1 + 2x_2 - 6x_3 = 24$
 $x_1 + 5x_2 + 2x_3 = 18$
 $3x_1 + 3x_2 + 4x_3 = 24$
 $x_1, x_2, x_3 = 0$

8. Consider the problem

maximize
$$4x_1 + 8x_2 + 3x_3$$

subject to $2x_1 - 3x_2 + 2x_3 = 26$
 $-3x_1 + x_2 + 4x_3 = 24$
 $3x_1 + 2x_2 - 2x_3 = 30$
 $x_1, x_2, x_3 = 0$

The first and last tableau are shown below.

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	b
<i>X</i> ₄	2	-3	2	1	0	0	26
<i>X</i> ₅	-3	1	4	0	1	0	24
<i>X</i> ₆	3	2	-2	0	0	1	30
	-4	-8	-3	0	0	0	0
<i>X</i> ₁	1	0	0	<u>5</u> 28	<u>1</u> 28	1 /4	13
<i>X</i> ₃	0	0	1	<u>9</u> 56	13 56	<u>1</u> 8	27 2
<i>X</i> ₂	0	1	0	$-\frac{3}{28}$	$\frac{5}{28}$	$\frac{1}{4}$	9
	0	0	0	<u>19</u> 56	<u>127</u> 56	<u>27</u> 8	<u>329</u> 2

Use sensitivity analysis to answer the questions below. For each situation, return to the original problem as given.

- (a) How much can c_2 , the coe cient of x_2 , change in the objective function and not change the solution of $(x_1, x_2, x_3) = (13, 9, \frac{27}{2})$?
- (b) What would be the new solution if the following constraint is added to the system?

$$x_1 - 2x_2 + 3x_3$$
 12